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1San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
2Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, CA 94551

3TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada

A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables
starting from accurate microscopic internucleon forces. A major element of such an effort is applying
unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab
initio calculations as a function of the model space size. The consistent simultaneous transformation
of external operators, however, has been overlooked in applications of the theory, particularly for
nonscalar transitions. We study the evolution of the electric dipole operator in the framework
of the similarity-renormalization group method and apply the renormalized matrix elements to
the calculation of the 4He total photoabsorption cross section and electric dipole polarizability.
All observables are calculated within the ab initio no-core shell model. We find that, although
seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable
in magnitude to the correction produced by including the chiral three-nucleon force and cannot be
neglected.

PACS numbers: 21.60.De, 05.10.Cc, 23.20.Js, 27.10.+h, 25.20.Dc

I. INTRODUCTION

Unitary transformations of the Hamiltonian have been
used to great effect in a range of nuclear physics problems
[1–11] to decouple high- and low-momentum components
of the interaction and promote numerical convergence in
large, but finite model spaces. However, in an A-nucleon
system, such beneficial decoupling of momentum scales
comes at the price of an effective Hamiltonian contain-
ing irreducible three- and higher-body (up to A-body)
terms, even when initially absent. In addition, for con-
sistency the same unitary transformation must to be ap-
plied to any operator associated with measurable quanti-
ties. This, once again, will induce many-body operators.

Widely adopted is the similarity renormalization group
(SRG) method, which employs a continuous unitary
transformation of the Hamiltonian characterized by a
momentum resolution scale λ [12]. The SRG transforma-
tion (or, evolution) of the Hamiltonian has been carried
out up to the three-body level both on a harmonic oscilla-
tor (HO) basis [8, 13–15] and, more recently, in momen-
tum representation [16], and the resulting interactions
have been successfully applied to compute properties of
a variety of nuclei [8, 9, 11, 13, 14, 17–19].

For systems with up to A ' 10 nucleons, bound-state
calculations including up to three-body induced forces
have been shown to lead to energies mostly independent
of λ above 1.8 fm−1, i.e. to approximately preserve the
unitarity of the transformation [8, 13, 14]. Small varia-
tions of the SRG momentum scale around 2 fm−1 have
been also shown to produce mostly negligible differences
in n-4He [20] and n-9Be [21] elastic phase shifts, but a
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more quantitative investigation was not possible due to
a slower rate of convergence for larger λ values combined
with the major computational demand of these calcula-
tions.

Few studies have dealt with the consistent transfor-
mation and application of operators, the other required
component to enable an accurate description of measur-
able nuclear properties when using effective operators.
This was first studied using the Okubo-Lee-Suzuki (LS)
renormalization [1, 22, 23] to compute electromagnetic
properties for several nuclei [24]. For the SRG, the evo-
lution of operators was achieved for the first time in the
deuteron, where only one- or two-body operators are rel-
evant, working in a momentum representation [25]. The
more complicated process of evolving and applying oper-
ators in finite nuclei beyond the deuteron was first exam-
ined in Ref. [26]. There, working on a translational in-
variant HO basis, we extended the approach of Ref. [13]
to evolve scalar (i.e., rank-zero in both angular momen-
tum and isospin) operators in the two- and three-body
spaces and used the resulting matrix elements to calcu-
late expectation values on the ground state (g.s.) of the
4He nucleus. (Note that only scalar operators contribute
to expectation values for this JπT = 0+0 four-nucleon
state). In particular, we showed that the inclusion of
up to three-body matrix elements in the 4He nucleus all
but completely restores the invariance of the root-mean
square radius and total electric dipole strength under the
SRG transformation.

While the work of Ref. [26] allowed us to perform ini-
tial proof-of-principle calculations, a general description
of observables also requires the ability to evolve, and em-
bed in finite nuclei, nonscalar operators. Further, more
work is needed to accurately asses the consistency of the
SRG approach for the description of continuum observ-
ables. Staring from an initial nucleon-nucleon plus three-
nucleon (NN + 3N) Hamiltonian from chiral effective



2

field theory [27, 28], in this paper we present the first
application of the SRG approach to compute the 4He
photoabsorption cross section and electric dipole polar-
izability. All induced forces up to the three-body level
are retained in the transformed Hamiltonian, while the
leading electric dipole transition operator is determined
(for the first time) by evolution in the A = 2 system.
All calculations are performed within the ab initio no-
core shell model (NCSM) [29] working with translational
invariant harmonic oscillator (HO) basis states. The pho-
toabsorption cross section is computed by means of the
Lorentz integral transform (LIT) method [30, 31], while
the electric polarizability is obtained according to Podol-
sky’s technique [32]. This allows us to bypass the direct
calculation of scattering states and to work only with
square-integrable basis states.

An ab initio investigation of both the photoabsorption
cross section [33] and the electric polarizability [34] of
the 4He nucleus based on chiral NN + 3N interactions
had been already accomplished in the past using LS effec-
tive interactions at the three-body cluster level [35, 36],
albeit without renormalization of the electric dipole op-
erator. The primary purpose of the present work is to
use these observables as testing grounds to explore the
performance and consistency of the SRG approach. In
particular we will perform the first accurate investiga-
tion of the dependence on the SRG momentum scale of
a continuum observable within a large range of λ values.

The paper is organized a follows. Section II provides
background on the formalism adopted. In particular, we
discuss how the SRG method modifies the Hamiltonian
and external operators and how the LIT can be used to
compute the response induced by the an external pertur-
bation, in our case, the dipole operator. In section III we
describe our results in three parts: convergence of the ob-
servables computed with respect to the size of the NCSM
model space adopted, a discussion on the unitarity of the
SRG transformation in our context and a comparison to
experimental cross section data. Lastly, section IV gives
a brief summary of our results and describes the next
steps in this research.

II. BACKGROUND

A. Hamiltonian and spectral resolution method

We start with the intrinsic nonrelativistic Hamiltonian
for a system of A nucleons (protons and neutrons)

Ĥ =
1

A

∑
i<j

(~pi − ~pj)2
2MN

+

A∑
i>j

V NNij +

A∑
i>j>k

V 3N
ijk , (1)

where V NNij and V 3N
ijk are, respectively, two- and three-

nucleon free-space interactions, which depend on the rel-
ative coordinates (and/or momenta for nonlocal forces)
between particles, ~pi is the momentum of particle i, and

MN is the nucleon mass. We then look for the eigen-
functions of Ĥ in the form of expansions over a complete
set of translational invariant and fully antisymmetric A-
body states. This amounts to diagonalizing the Hamil-
tonian in the many-body basis. In particular, we use
the Jacobi-coordinate harmonic oscillator (HO) basis of
the ab initio no-core shell model (NCSM) [29], in which
the model space is defined by all A-body states up to
a maximum excitation of Nmax~Ω excitation above the
minimum energy configuration of the system, and Ω is
the HO frequeny.

While in principle the above is an exact prescription for
the solution of the Schrödinger equation associated with
the Hamiltonian of Eq. (1), in practice we work with a
finite model space and achieve convergence to the exact
results with increasing Nmax. Crucial for the success of
this approach is the use of unitary transformations of
the Hamiltonian chosen to reduce the coupling between
high- and low-momentum states, which arises from the
bare nuclear interaction’s “hard core” and leads to slow
convergence in the size of the model space. Here we fo-
cus on the unitary transformation described by the SRG
approach, described in the next section.

Our numerical method of choice for obtaining the spec-
trum of energy states of the Hamiltonian is the Lanczos
method [37]. Given a starting arbitrary unit vector |φ0〉,
it recursively allows us to define a set of orthonormal ba-
sis states |φi〉 – known as Lanczos vectors – for which the
Hamiltonian matrix assumes a tridiagonal form:

bi+1|φi+1〉 = Ĥ|φi〉 − ai|φi〉 − bi|φi−1〉 . (2)

Here |φ−1〉 = 0, and ai = 〈φi|Ĥ|φi〉 and bi = ||bi|φi〉||
are respectively the diagonal and upper (lower) diagonal
elements of the Hamiltonian in the new basis, or Lanc-
zos coefficients as they are often called. The power of
the Lanczos method is that the extremum eigenvalues
of the Hamiltonian quickly converge to their true value
after a limited number of iterations, much smaller than
the dimension of the problem. Further, relevant to the
calculation of the 4He photoabsorption cross section and
electric polarizability discussed in this paper, the Lanczos
coefficient can be used to accurately evaluate the expec-
tation value of the Green’s function on a normalized vec-
tor, G(z) = 〈φ0|(z − Ĥ)−1|φ0〉, in terms of the continued
fraction [38, 39]

G(z) =
1

z − a0 − b21

z−a1−
b22

z−a3−
b23

...

. (3)

B. SRG evolution

As implemented for nuclear physics [12, 40], the SRG
method employes a unitary transformation, Us, on the
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initial Hamiltonian Ĥs=0 = Ĥ

Ĥs = ÛsĤs=0Û
†
s , (4)

that can be implemented as a flow equation [41] in the
continuous parameter s and an anti-Hermitian generator
η̂s = (dÛs/ds) Û

†
s ,

dĤs

ds
= [η̂s, Ĥs]. (5)

Although other generators have been used [42, 43], a
common choice for this operator is the commutator of
the evolved Hamiltonian with the kinetic energy, η̂s =
[T̂ , Ĥs]. This drives the Hamiltonian towards diagonal
form in momentum space, thus decoupling high- and
low-momentum states. The spread of the residual off-
diagonal strength can be measured by the parameter with
units of momentum λ [where s−1 = (~λ)4/M2

N ], which
can be used to follow the evolution of the Hamiltonian in
place of s. We note that as λ decreases, the Hamiltonian
will undergo more evolution and λ = ∞ corresponds to
the initial Hamiltonian.

Working within a discrete basis, Eq. (5) can be cast
into a set of coupled first-order differential equations
for the matrix elements of the flowing Hamiltonian Ĥs,
with the right-hand side of the equation being simply
given by matrix multiplications. The procedure to deter-
mine the two- and three-body components of the evolved
Hamiltonian within the Jacobi-coordinate HO wavefunc-
tions adopted in this work was presented in Refs. [8, 13].
In particular, depending on the absence or presence of
V 3N in Eq. (1), one can identify three classes of evolved
Hamiltonians: (1) NN -only, two-body Hamiltonian from
the SRG evolution of the NN force in the two-nucleon
space; (2) NN + 3N -induced, three-body Hamiltonian
from the SRG evolution of the NN force in the three-
nucleon space; and (3) NN + 3N , SRG Hamiltonian ob-
tained from evolving the NN plus initial 3N force in the
three-nucleon system.

The consistent application of the SRG approach re-
quires that any other operator Ô undergo the same uni-
tary transformation as the Hamiltonian, i.e.

Ôs = ÛsÔs=0Û
†
s . (6)

While this can be rewritten into a similar form as Eq. (5),
it is more computationally efficient to compute the uni-
tary transformation, Ûs, using the eigenvectors of the
Hamiltonian before and after the transformation, |ψα(0)〉
and |ψα(s)〉 respectively,

Ûs =
∑
α

|ψα(s)〉〈ψα(0)|. (7)

In a discrete basis the transformation of Eq. (6) is then
given, once again, by simple matrix multiplications. In
particular, for parity-conserving rank-zero operators (as

for the Hamiltonian, working in the isospin formalism) Ûs
corresponds to a block-diagonal matrix with respect to

the various angular-momentum, parity and isospin chan-
nels (JπT ) of the system, and the evolution can be per-

formed block by block in parallel to that of Ĥs. This type
of evolution for operators, in both the A = 2 and A = 3
systems, has been recently implemented working within
the Jabobi-coordinate NCSM basis [26]. The situation
is more complicated for nonscalar operator, as they will
couple different blocks. In this case, the unitary transfor-
mation must to be computed and stored for each block
during the evolution of the Hamiltonian and the matrix
elements of the evolved operator must be reconstructed
in a second step. In this work, we have implemented this
process in the A = 2 space, while we defer to a future
publication the technically more challenging process of
evolving nonscalar operators in the three-body space.

In general, to determine the two- and three-body com-
ponents of an evolved operator we follow a similar proce-
dure as that adopted for the Hamiltonian in Refs. [8, 13].

We start by evolving Ĥs, hence calculating Ûs, in the
A = 2 system and determining the matrix elements of

the two-body evolved operator, 〈Ô(2)
s 〉, through Eq. (6).

Next, (for scalar operators) we repeat the operation in

the A = 3 system, thus computing 〈Ô(3)
s 〉, and then iso-

late the induced three-body components of the evolved

operator via subtraction, 〈Ô(3)
s 〉 − 〈Ô(2)

s 〉, where the sec-
ond term corresponds to the two-body evolved opera-
tor embedded in the three-nucleon basis. This allows us
to accurately calculate and separate the two- and three-
body matrix elements of the evolved operator, which we
can then use unchanged in calculations for any nucleus.
The second step can also be performed with or without
the initial three-nucleon force in the Hamiltonian. Simi-
lar (but not quite parallel) to the three classes of Hamil-
tonian discussed earlier, this procedure leads to the fol-
lowing three stages of operator evolution: (1) Bare or
unevolved operator; (2) 2B evolved, SRG-evolution of
the operator in the two-body space; and (3) 3B evolved,
SRG-evolution of the operator in the three-body space,
allowing the induction of three-body terms.

C. Photoabsorption cross section and electric
polarizability

At low excitation energies, when the long wavelength
limit applies,the nuclear photo-absorption process can be
described by the cross section [44]

σγ(ω) = 4π2 e
2

~c
ωR(ω), (8)

where ω is the perturbing photon energy and R(ω) is the
inclusive response function, given by,

R(ω) =

∫
dΨf

∣∣∣〈Ψf |D̂|Ψ0〉
∣∣∣2 δ(Ef − E0 − ω), (9)

where Ef and E0 represent the final-state and g.s. ener-
gies along with their associated wavefunctions, |Ψf 〉 and
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|Ψ0〉, respectively and D̂ is the electric dipole operator,

D̂ =

√
4π

3

A∑
i=1

τzi
2
riY10(r̂i) . (10)

Here, τzi is the third component of isospin, ~ri = rir̂i is the
position vector of the ith particle in the center-of-mass
frame.

To bypass the direct calculation of the final states,
which for a light nucleus such as 4He are all in the energy
continuum, the LIT method [30, 31] obtains the response
function, R(ω), after the evaluation and subsequent in-
version [45, 46] [%add more citations] of its convolution
with a Lorentzian kernel of finite width σI ,

L(σR, σI) =

∫
dω

R(ω)

(ω − σR)2 + σ2
I

, (11)

where σR is a continuous variable with unit of energy.
Taking advantage of the completeness of the eigenstates
of the Hamiltonian this can be rewritten as [47]

L(σR, σI) = −M0

σI
Im{G(z)}, (12)

where G(z) is the Green’s function of Eq. (3) evaluated
at the complex energy z = E0 + σR + σI on the start-

ing Lanczos vector |φ0〉 = M
−1/2
0 D̂|Ψ0〉. The quantity

M0 is the total strength of the transition induced by the
dipole operator, which can be either evaluated directly
as the expectation value M0 = 〈Ψ0|D̂†D̂|Ψ0〉 of the op-

erator D̂†D̂ on the g.s. wavefunction, or as the square
norm M0 = ||D̂|Ψ0〉||2 of the vector D̂|Ψ0〉. In the first

case, only the scalar component of the D̂†D̂ operator is
needed for the evaluation of the total dipole strength on
the JπT = 0+0 g.s. of the 4He nucleus.

Similarly, in the unretarded dipole long-wavelength ap-
proximation adopted here, the electric dipole polarizabil-
ity of the nucleus is given by

αE = 2
e2

~c

∫
dΨf

∣∣∣〈Ψf |D̂|Ψ0〉
∣∣∣2

Ef − E0
, (13)

which corresponds to the double inverse-energy weighted
sum rule of the photoabsorption cross action of Eq. (8)

αE =
1

2π2

∫ ∞
ωth

dω
σγ(ω)

ω2
, (14)

with ωth the threshold energy for photoabsorption.
While the electric polarizability can be obtained through
Eq. (14) by numerical integration of the computed cross
section of Eq. (8), it is more efficient and numerically
more accurate to take advantage of the completeness of
the eigenstates of the Hamiltonian and directly evaluate
it by means of the Lanczos method as

αE = −2
e2

~c
M0G(E0) (15)

with the same starting vector as in Eq. (12).

III. RESULTS

All results are obtained employing the Idaho N3LO
nucleon-nucleon interaction of Ref. [48] and the N2LO
three-nucleon force from Ref. [49] with the low energy
constants adjusted to reproduce the triton half-life and
the binding energies of 3H and 3He nuclei [50]. Unless
differently stated, we truncate all of our calculations in
the A = 2 model space at Nmax = 300 and the A =
3 model space at Nmax = 40, denoted as NA2max and
NA3max, respectively. The HO model space size for the
4He system will be simply indicated as Nmax.

In Sec. III A we start by exploring the evolution of a
few matrix elements of the dipole transition. Next, in
Sec. III B, we discuss the convergence properties of our
results with respect to variations in both Nmax and HO
frequency, ~Ω. Finally, in Sec. III C, we study the λ
dependence of our calculations and, in Sec. III D present
a comparison with available experimental data.

A. Two-body evolved dipole operator

To obtain the photoabsorption cross section and elec-
tric dipole polarizability of Sec. II C within the SRG ap-
proach, we need to consider the evolution of the electric
dipole operator of Eq. (10) that induces a JπT = 1−1
transition between initial and final states. For 4He, the
total dipole strength entering Eqs. (12) and (15) can
be evaluated as the expectation value of a scalar oper-
ator, and we can use the technology we developed in
Ref. [26] to renormalize D̂†D̂ (a scalar operator) up to

the three-body level. However, the matrix elements of D̂
are still needed to compute the Lanczos starting vector,
which is proportional to D̂|Ψ0〉. As already mentioned
in Sec. II B, properly evolving a nonscalar operator in-
troduces additional technical complications, particularly
in the A = 3 system. At the same time, we expect that
the renormalization of the dipole will have only a minor
effect on the Green’s functions of Eq. (12) and (15) if
the Hamiltonian is evolved up to the three-body level.
Therefore, for the time being we will limit ourselves to
two-body matrix elements of the evolved D̂ in the calcu-
lation of the Lanczos starting vector.

Fig. 1 shows snapshots of the evolution of the dipole
operator in HO space for 3S1 (T=0) to 3P2 (T=1) tran-
sitions. The color bar represents the value of the HO
matrix elements and is truncated to highlight the off di-
agonal behavior as the operator is evolved. Since this is
a transition between different initial and final states, the
representation in HO space is not symmetric. Snapshots
of this kind are useful for examining the behavior of the
matrix elements during evolution and have been shown
previously for operators evolved in momentum space [25]
and for the Hamiltonian evolved in HO [15, 51] and mo-
mentum space [12, 52]. Here, the discretized axes, n and
n′, are the radial quantum numbers of the HO wavefun-
tion and directly correspond to the energy is HO space.
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FIG. 1. (Color online) SRG evolution of the two-body dipole operator in HO space for the 3S1 to 3P2 transition. The color
bar represents the value of the dipole matrix elements and is truncated to highlight the off-diagonal behavior as a function of
evolution, from bare (λ =∞) to λ = 1.5 fm−1. The matrix elements have units of e·fm.

For this transition, the bare operator starts as a lower
bidiagonal matrix and as λ decreases we see increased
strength in the off diagonal matrix elements. So while
the SRG evolves the momentum space Hamiltonian to a
more diagonal form, it spreads out the dipole operator in
HO space.

B. Convergence

In this section, we discuss the behavior of our calcula-
tions with respect to variations of the frequency ~Ω and
size Nmax of the adopted HO model space.

We start in Fig. 2 by analyzing the total strength, M0,
of the bare dipole operator evaluated on the 4He evolved
g.s. wavefunction (using, in this example, the NN+3N
Hamiltonian with λ = 2.5 fm−1) for a range of HO fre-
quencies and various basis sizes. As Nmax increases, the
total dipole strength becomes more and more indepen-
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NA2max = 300
NA3max = 40

~Ω

4He

λ = 2.5 fm−1

Nmax

FIG. 2. (Color online) Convergence of the total dipole
strength M0 of 4He as a function of Nmax using the bare op-
erator and evolved wavefunctions from the NN+3N Hamil-
tonian with λ = 2.5 fm−1 at ~Ω = 22, 28, 34, and 40 MeV.

dent from the choice of the ~Ω value in the range 22−40
MeV, reaching a flat behavior in the largest model spaces.
The weakest Nmax dependence is found for frequencies
between 22 and 28 MeV, for which an excellent conver-
gence is already achieved at Nmax = 18 proceeding from
above and from below, respectively. These two ~Ω values
will be adopted for the reminder of our study. In addi-
tion, our choices for Nmax has been shown to be fully con-
verged and robust against changes to the HO frequency
[53].

The typical convergence of M0 as a function of Nmax,
computed as the norm ||D̂|Ψ0〉||2, for the bare and two-
body evolved dipole operators is presented in Figs. 3(a)
and 3(b), respectively. As the dipole is a long range oper-
ator, we see almost no increase in the rate of convergence
of the evolved over the bare operator (both evaluated, as
in Fig. 2, on NN+3N evolved wavefunctions). Rather,
the SRG evolution of the wavefunction provides a smooth
convergence pattern, especially at smaller values of λ,
regardless of the level of operator evolution. As an ex-
ample, for λ = 2.5 fm−1 the M0 values begin to follow
an exponential convergence above Nmax = 10, whereas at
λ = 1.8 fm−1 the exponential convergence begins already
at Nmax ∼ 6. This could be used effectively to extrapo-
late to Nmax = ∞ in heavier systems where one cannot
feasibly reach large Nmax values or where convergence of
observables is very slow.

As will be discussed in the next section and can be
seen in Figs. 3(a) and 3(b), for dipole transitions the
converged values tend to increase as λ decreases. This
is due to the omission of induced many-body [three- and
four-body in the case of Fig. 3(b)] contributions to the
SRG evolved operator. Indeed, the difference between
the M0 values obtained with bare and 2B evolved op-
erators is much larger at 1.8 than at 3.0 fm−1 due to
the increasing strength of the SRG induced terms as λ
decreases.

In Fig. 4 we compare the convergence with respect to
Nmax of M0 computed in two different ways: as the norm
||D̂|Ψ0〉||2 of the 2B evolved dipole operator, D̂, acting
on the 4He g.s. and as the expectation value on the g.s.
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FIG. 3. Convergence of the total dipole strength M0 of 4He as a function of Nmax at ~Ω = 28 MeV using (a) the bare and (b)

the 2B evolved D̂ operator and wavefunctions from the NN+3N Hamiltonian with λ = 1.8, 2.2, 2.5, and 3.0 fm−1.

wavefunction of the 2B evolved D̂†D̂ operator. The two
procedures yield the same result when the bare opera-
tors are employed, represented by the arrow in the fig-
ure. However, in general the same is not true upon the
SRG evolution, which results in a different renormaliza-
tion for operators exhibiting different short-range prop-
erties. Similar to what we have observed for the bare
operator, varying the oscillator frequency from 22 to 28
MeV produces little change in the converged value of the
observables. This is not surprising considering the large
model spaces reached in the present work. More interest-
ing are the differences in the size of 2B induced contribu-
tions for the total dipole strength calculated as ||D̂|Ψ0〉||2
versus 〈Ψ0|D̂†D̂|Ψ0〉. A somewhat larger renormaliza-
tion is observed in the case of the former, shorter-range
operator.
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FIG. 4. (Color online) Convergence as a function of Nmax

of the two-body evolved total dipole strength, M0, of 4He
computed as ||D̂|Ψ0〉||2 (squares) and D̂†D̂ (circles) for λ =
1.8 fm−1 and ~Ω = 22 MeV (dashed lines) and 28 MeV (solid
lines). The arrow shows the converged value of M0 computed
with the bare operator. Results were obtained using the wave-
function from the NN+3N Hamiltonian.
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FIG. 5. (Color online) Convergence of the bare (circles) and
two-body SRG evolved (squares) electric polarizability of 4He
as a function of Nmax for (a), λ = 1.8 fm−1 with ~Ω = 22
MeV (dashed line) and 28 MeV (solid line), and (b), with
fixed ~Ω = 28 MeV at λ = 1.8 (dashed line) and 2.5 fm−1

(solid line). Results were obtainted using the wavefunction
from the NN+3N Hamiltonian.

Next, in Fig. 5, we consider the electric dipole polar-
izability, calculated according to Eq. (15) with M0 =

||D̂|Ψ0〉||2. Two values of the frequency (~Ω = 22 and
28 MeV) and SRG momentum scale (λ = 1.8 and 2.5
fm−1) are explored for Nmax values varying between 2
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FIG. 6. (Color online) Dependence of the 4He total photoab-
sorption cross section computed with the NN+3N -induced
(region delimited by dashed [blue] lines) and NN+3N (region
delimited by solid [red] lines) Hamiltonians and 2B evolved
dipole operator on: (a) the model space size Nmax at ~Ω = 28
MeV and λ = 1.8 fm−1; and (b) the HO frequency ~Ω at
Nmax = 18/19 and λ = 2.5 fm−1. Also shown (dotted [black]
line) is the result of the LS calculation of Ref. [33] using the
N3LO NN interaction.

and 18. The convergence patterns obtained for the bare
versus 2B evolved operator are once again very similar,
although a slightly faster flattening of the curves can be
observed for the latter, and the two frequencies adopted
yield very similar results at Nmax = 18. As with the total
dipole strength, the inclusion of the 2B evolved operator
reduces the spread in the SRG momentum scale and the
contribution of the two-body induced terms is larger for
λ = 1.8 fm−1.

To conclude this section, we assess by means of Fig. 6
the sensitivity of the 4He photoabsorption cross section,
computed according to Eq. (8), to variations of the HO
model space size and frequency. The total dipole strength
entering the evaluation of the LIT (12), and hence of
the response function R(ω) of Eq. (9), was obtained as

M0 = ||D̂|Ψ0〉||2 using the 2B evolved operator. Both
NN+3N -induced and NN+3N Hamiltonians are con-
sidered. For the sake of comparison, after being com-
puted all theoretical cross sections are shifted to the ex-
perimental threshold for the 4He photo-disintegration,
Eth = 19.8 MeV (ω → ω + ∆Eth, with ∆Eth being
the difference of the calculated and experimental thresh-
olds). This allows to highlight differences beyond those
occurring at the level of the 4He and 3H binding en-
ergies. Due to the selection rules associated with the
dipole operator (10), for a given Nmax in the JπT = 0+0
model space used to expand |Ψ0〉, a complete calcula-
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FIG. 7. (Color online) Dependence of (a) total strength of
the dipole transition and (b) electric dipole polarizability on
variations of the SRG flow parameter, λ, for Nmax = 18
and ~Ω = 28 MeV, obtained using wavefunctions from the
NN + 3N -induced (dashed lines) and NN+3N (solid lines)
Hamiltonians along with four types of operators: bare (cir-

cles), 2B evolved D̂ (squares), 2B evolved D̂†D̂ (diamonds)

and 3B evolved D̂†D̂ (triangles). The dotted line in panel (b)
indicates the evaluation of Ref. [34] based on a LS renormal-
ization of the N3LO NN plus N2LO 3N interactions and bare
dipole operator. See the text for more details.

tion of Eq. (12) requires the expansion of the starting

Lanczos vector |ϕ0〉 = M
−1/2
0 D̂|Ψ0〉 over a JπT = 1−1

space up to Nmax + 1. This is the origin of the odd/even
notation for Nmax introduced in Fig. 6. The relative un-
certainty due to the finite size of the HO space, esti-
mated from the difference of the cross section calculated
at Nmax = 18/19 and 16/17 is largest for the NN+3N
Hamiltonian, remaining below 2% above ω ∼ 22 MeV. At
lower energies – where the cross section is smaller – the
relative uncertainty grows somewhat reaching a value of
∼ 8% at threshold. Varying the HO frequency from 28 to
22 MeV produces results within 3%, except for energies
very close to threshold. Finally, as shown in Fig. 6(b),
the present NN+3N -induced results are consistent with
those obtained in Ref. [33] using a LS transformation of
the N3LO NN potential at the three-body cluster level,
in which the dipole operator was not renormalized.
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FIG. 8. (Color online) Dependence (represented as the width of the bands) on the variation of λ between 1.8 and 3.0 fm−1

of the 4He photo-absorption cross section, σγ(ω), as a function of the photon energy, ω, at Nmax = 18/19 and ~Ω = 28 MeV,
using the NN + 3N -induced (dashed contours) and NN + 3N (solid contours) wavefunctions. Calculations were obtained
with: (a) the bare dipole operator; (b) the 2B evolved dipole operator; and (c) rescaling the 2B evolved results by the ratio

〈Ψ0|D̂†D̂|Ψ0〉/||D̂|Ψ0〉||2, with the D̂†D̂ operator evolved in the three-nucleon space (3B rescaled operator∗).

C. SRG resolution scale dependence

In Fig. 7, we study the dependence on the SRG evolu-
tion parameter of the 4He total dipole strength and elec-
tric dipole polarizability. These results where obtained
with an oscillator frequency of ~Ω = 28 MeV and con-
verged calculations at Nmax = 18.

The behavior of the total dipole strength as a function
of λ, presented in Fig. 7(a), is consistent with that ob-
tained in our previous study [26] of the evolution of the

D̂†D̂ operator up to the three-body level. Different from
that work, here we show also results obtained by comput-
ing M0 as the norm ||D̂|Ψ0〉||2 of the two-body evolved
dipole operator acting on the g.s. wavefunction. When
using the bare operator, the observables have a significant
dependence on λ, particularly at smaller values. When
using the two-body evolved operators, this dependence is
reduced. The difference between the bare and two-body
evolved operator, which we refer to as the two-body con-
tribution to the evolution, is larger at smaller values of
λ and tends to decrease rapidly as λ increases. Further,
such two-body contribution is found to be larger when
the total strength is calculated as ||D̂|Ψ0〉||2 using the
two-body evolved dipole operator. This is related to the
longer range of the D̂†D̂ operator compared to the dipole
itself. For the time being, results for the evolution at the
three-body level have been obtained only for the scalar
D̂†D̂ operator [26]. The three-body contribution to the
operator evolution is much smaller than the two-body
contribution, establishing a hierarchy in the magnitude
of the SRG induced terms for operator evolution. Over-
all, the smallest spread in λ is found using the three-body
evolved D̂†D̂ operator. The slight residual dependence
on λ is due to the induced four-body terms that we do

not take into account for these calculations.

The electric dipole polarizabilty, presented in Fig. 7(b),
shows a similar trend to that of the total dipole strength.
The inclusion of the two-body induced terms of the oper-
ator provides a substantial correction to the polarizabil-
ity, especially at smaller values of λ. To estimate the con-
tribution to this observable of three-body induced terms
of the operator, in Fig. 7(b) we also show the polarizabil-
ity (triangles) obtained by rescaling the 2B evolved polar-

izability (squares), by the ratio 〈Ψ0|D̂†D̂|Ψ0〉/||D̂|Ψ0〉||2,

where the D̂†D̂ operator is evolved in the three-nucleon
space and is ||D̂|Ψ0〉||2 evolved in the two-nucleon space.
The residual dependence on λ displayed by these rescaled
results comes then from four-body induced SRG terms
but also from missing three-body induced dipole operator
terms in the calculation of the Green’s function, G(E0),
of Eq. (15). This latter contribution is expected to be
small if the Hamiltonian is evolved up to the three-body
level. Also shown in the figure as a dotted line is the eval-
uation of Ref. [34] based on a LS renormalization of the
N3LO NN plus N2LO 3N interactions and bare dipole
operator.

Finally, in Fig. 8 we explore the effect of the SRG
evolution of the transition operator on the 4He photo-
absorption cross-section. This study was performed us-
ing our largest model space of Nmax = 18/19 at ~Ω = 28
MeV and both NN+3N -induced and NN+3N wave-
functions, varying the SRG resolution scale between 1.8
and 3.0 fm−1. We choose this range of λ because pre-
vious structure calculations show that the g.s. energy
is mostly independent of the transformation in this re-
gion. As shown in Fig. 8(a), when using the bare dipole
operator there is a clear dependence of the cross section
on λ, and the spread is slightly larger for the calculation
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TABLE I. Calculated 4He g.s. energy E0, point-proton root-mean square radius
√
〈r2p〉, total dipole strength 〈Ψ0|D̂†D̂|Ψ0〉,

and electric dipole polarizability αE using the using the λ = 1.8 and 3.0 fm−1 NN + 3N -induced and NN + 3N Hamiltonians
along with three-body evolved operators compared to results published in the literature and experiment. See the text for more
details.

Interaction λ (fm−1) Eg.s. (MeV)
√
〈r2p〉 (fm) 〈Ψ0|D̂†D̂|Ψ0〉 (fm2 ) αE (fm3 )

NN+3N -ind 1.8 −25.325(1) 1.5231(11) 0.9520(3) 0.08647(5)

3.0 −25.348(2) 1.5165(12) 0.9439(4) 0.08404(5)

N3LO NN (LS) [33] – −25.39(1) 1.515(2) 0.943(1) –

NN+3N 1.8 −28.464(2) 1.4723(7) 0.8867(4) 0.07093(5)

3.0 −28.458(3) 1.4651(5) 0.8776(5) 0.06861(5)

Evaluation (LS) [34] – – – – 0.0683(8)(14)

Expt. – −28.296 1.455(7) [54] – 0.072(4) [55]

0.076(8) [56]

using the NN+3N Hamiltonian. Specifically, beginning
at a photon energy of 26 MeV and persisting up to the
largest energy shown here there is a spread of more than
0.2 mb between theNN+3N cross sections obtained with
the smallest and largest value of λ (corresponding respec-
tively to the upper and lower bounds of the shaded areas).
This amounts to an effect between 6 and 11%, depending
on the photon energy, which is substantially larger than
our uncertainty due to the finite size of the HO model
space or choice of frequency. Further, this spread is com-
parable to the contribution coming from the inclusion of
the initial chiral 3N force into the Hamiltonian, which –
at a given λ value – quenches the peak of the cross section
by about 0.25 mb. When we evolve the dipole operator
in the two-body space [see Fig. 8(b)], the spread in the
cross section is a factor of three tighter, about 0.06 mb
(between 2% and 4% in the range 24 MeV ≤ ω ≤ 35
MeV), and the effect of the inclusion of the initial chiral
3N force can be clearly singled out. To take into account
three-body induced terms of the transition operator, at
least in part, the cross sections of Fig. 8(b) can be fur-

ther rescaled by the ratio 〈Ψ0|D̂†D̂|Ψ0〉/||D̂|Ψ0〉||2, with

the D̂†D̂ operator evolved in the three-nucleon space (3B
rescaled operator∗). The result of this operation, shown
in Fig. 8(c), is mainly an overall small reduction of all
curves, and a very minor narrowing of the spread in λ.
The remaining λ dependence is due, once again, to four-
body induced SRG terms and from missing three-body
induced dipole operator terms in the calculation of the
Green’s function, G(E0), of Eq. (12).

D. Comparison with literature and experiment

Table I presents a summary of our results for total
dipole strength 〈Ψ0|D̂†D̂|Ψ0〉 and electric dipole polar-
izability αE obtained employing the NN + 3N -induced
and NN + 3N Hamiltonians along with the three-body
evolved D̂†D̂ operator in the largest model space. For
the electric polarizability, these results represent an up-

per bound as the effect of three-body induced dipole op-
erator terms in the calculation of the Green’s function
of Eq. (15) are still missing. Two values of λ, 1.8 and
3.0 fm−1, are shown to help quantify the effect of miss-
ing induced terms. For completeness, we also show the
corresponding values of the g.s. energy, E0, and point-

proton root-mean square radius,
√
〈r2p〉, of Ref. [26], in-

cluding three-body induced terms. The errors estimates
of the observables are computed as the difference be-
tween the value at largest model space, Nmax = 18,
and the next smallest model space, Nmax = 16. The
present results for the g.s. energy are the same as the
previous NCSM calculation of Ref. [8] and those for the
NN+3N -induced point-proton radius and total dipole
strength are consistent with those obtained in Ref. [33]
using a LS transformation of the N3LO NN potential at
the three-body cluster level, in which the operators were
not renormalized. In particular, the agreement with the
LS values is excellent for λ = 3.0 fm−1, where the contri-
bution of four-body induced terms is negligible. A similar
comparison for the NN+3N Hamiltonian is not possi-
ble, because the results of Ref. [33] were obtained with
a sightly different parameterization of the N2LO three-
nucleon force. Also in very good agreement with the
evaluation of Ref. [34] and with experiment is the electric
dipole polarizability computed with the NN+3N inter-
action.

For completeness, in Fig. 9, we compare our results
for the 4He photoabsorption cross section of Fig. 8(c)
to experimental data in the region ω < 40 MeV, where
corrections to the unretarded dipole approximation used
here to describe the photo disintegration process are ex-
pected to be largely negligible. As for the electric po-
larizability, the present results represent an upper bound
due to the missing effect of three-body induced dipole
operator terms in the calculation of the Green’s function
of Eq. (15). The photodisintegration of 4He has been
the subject of many experiments (see, e.g. Refs. [58],
[59], [60], and [61] for the most recent ones) and has al-
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Nilsson [59], Nakayama [60] and Raut [61]. See the text for
more details.

ready been investigated in ab initio calculations including
three-nucleon forces [33, 62]. The results obtained here
with the NN+3N -induced Hamiltonian are close the re-
cent Coupled Cluster calculation of Ref. [63], using the
bare N3LO potential. Different from Ref. [33], here the
NN+3N results have been obtained starting from the
N2LO 3N force of Ref. [50]. Therefore, the two calcu-
lation cannot be compared directly. Nevertheless, the
overall picture drawn by the present study is not very
dissimilar from that of Ref. [33] or Ref. [62]. In particu-
lar, although the inclusion of the three-nucleon force and
evolved dipole operator produces a seemingly improved
agreement with experiment, the considerable scatter of
the experimental data in the peak region continues to
prevent a definitive conclusion concerning the quality
of the interactions used. [Note that in Fig. 9 we esti-
mated the total cross section from the 4He(γ, n) measure-
ments of Ref. [59] by assuming σγ(ω) ≈ 2σγ,n(ω), and
from the 4He(γ, p)3H of Ref. [61] by assuming σγ(ω) ≈
σγ,p(ω) + σγ,p(ω + 0.5 MeV).

IV. CONCLUSION

We have, for the first time, SRG evolved the dipole
operator in the two-body space and computed the total

strength of the dipole transition, electric dipole polar-
izability and the total photoabsorption cross-section of
4He. Since the dipole operator acts primarily at long
range, we see little change in the convergence properties
of these observables over using the bare operator.

For all three observables, there is a significant reduc-
tion of the dependence on the SRG evolution parameter
when evolving the dipole operator in the two-body space.
Generally, this reduction is on the order of the effect of
the including the three nucleon force. So although the re-
duction is relatively small in magnitude, its effects are not
negligible. Any residual dependence on λ in our calcu-
lations is due to the induced three- and four-body terms
that we do not take into account. Based on our experi-
ence with calculations of energies and radii, these higher
order contributions should be smaller than the two-body
contributions to the evolution.

Future work will include evolving the dipole operator,
and other nonscalar operators, in the three-body space.
This will allow us to investigate the three- and four-body
contribution to the evolution of these operators in the
A = 4 system. We also plan to extend these calcula-
tions to heaver systems (e.g., up to A = 12), where it
is advantageous to work with single-particle Slater de-
terminate basis states. We will do this by transforming
our two-, and eventually, three-body nonscalar operators,
presently in a translationally invariant Jacobi-coordinate
basis, into matrix elements over Slater determinate basis
states.
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P. Navrátil, Phys. Rev. C 79, 064001 (2009).
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